233 research outputs found

    Microglia in Alzheimer\u27s disease

    Get PDF
    Microglia are brain-resident myeloid cells that mediate key functions to support the CNS. Microglia express a wide range of receptors that act as molecular sensors, which recognize exogenous or endogenous CNS insults and initiate an immune response. In addition to their classical immune cell function, microglia act as guardians of the brain by promoting phagocytic clearance and providing trophic support to ensure tissue repair and maintain cerebral homeostasis. Conditions associated with loss of homeostasis or tissue changes induce several dynamic microglial processes, including changes of cellular morphology, surface phenotype, secretory mediators, and proliferative responses (referred to as an activated state ). Activated microglia represent a common pathological feature of several neurodegenerative diseases, including Alzheimer\u27s disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while microglial-mediated clearance mechanisms are compromised. Microglia are perpetually engaged in a mutual interaction with the surrounding environment in CNS; thus, diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of inflammatory activities. In this Review, the role of microglia in the pathogenesis of AD and the modulation of microglia activity as a therapeutic modality will be discussed

    PPARs in Alzheimer's Disease

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are well studied for their peripheral physiological and pathological impact, but they also play an important role for the pathogenesis of various disorders of the central nervous system (CNS) like multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. The observation that PPARs are able to suppress the inflammatory response in peripheral macrophages and in several models of human autoimmune diseases lead to the idea that PPARs might be beneficial for CNS disorders possessing an inflammatory component. The neuroinflammatory response during the course of Alzheimer's disease (AD) is triggered by the neurodegeneration and the deposition of the β-amyloid peptide in extracellular plaques. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been considered to delay the onset and reduce the risk to develop Alzheimer's disease, while they also directly activate PPARγ. This led to the hypothesis that NSAID protection in AD may be partly mediated by PPARγ. Several lines of evidence have supported this hypothesis, using AD-related transgenic cellular and animal models. Stimulation of PPARγ receptors by synthetic agonist (thiazolidinediones) inducing anti-inflammatory, anti-amyloidogenic, and insulin sensitising effects may account for the observed effects. Several clinical trials already revealed promising results using PPAR agonists, therefore PPARs represent an attractive therapeutic target for the treatment of AD

    Peroxisome Proliferator-Activated Receptors (PPARs) as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy

    Impact and Therapeutic Potential of PPARs in Alzheimer's Disease

    Get PDF
    Peroxisome proliferator activated receptors (PPARs) are well studied for their role of peripheral metabolism, but they also may be involved in the pathogenesis of various disorders of the central nervous system (CNS) including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's and, Parkinson's disease. The observation that PPARs are able to suppress the inflammatory response in peripheral macrophages and in several models of human autoimmune diseases, lead to the idea that PPARs might be beneficial for CNS disorders possessing an inflammatory component. The neuroinflammatory response during the course of Alzheimer's disease (AD) is triggered by the deposition of the β-amyloid peptide in extracellular plaques and ongoing neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been considered to delay the onset and reduce the risk to develop Alzheimer’s disease, while they also directly activate PPARγ. This led to the hypothesis that NSAID protection in AD may be partly mediated by PPARγ. Several lines of evidence have supported this hypothesis, using AD related transgenic cellular and animal models. Stimulation of PPARγ by synthetic agonist (thiazolidinediones) inducing anti-inflammatory, anti-amyloidogenic and insulin sensitizing effects may account for the observed effects. Several clinical trials already revealed promising results using PPARγ agonists, therefore PPARγ represents an attractive therapeutic target for the treatment of AD

    Immediate and long-term consequences of COVID-19 infections for the development of neurological disease

    Get PDF
    Increasing evidence suggests that infection with Sars-CoV-2 causes neurological deficits in a substantial proportion of affected patients. While these symptoms arise acutely during the course of infection, less is known about the possible long-term consequences for the brain. Severely affected COVID-19 cases experience high levels of proinflammatory cytokines and acute respiratory dysfunction and often require assisted ventilation. All these factors have been suggested to cause cognitive decline. Pathogenetically, this may result from direct negative effects of the immune reaction, acceleration or aggravation of pre-existing cognitive deficits, or de novo induction of a neurodegenerative disease. This article summarizes the current understanding of neurological symptoms of COVID-19 and hypothesizes that affected patients may be at higher risk of developing cognitive decline after overcoming the primary COVID-19 infection. A structured prospective evaluation should analyze the likelihood, time course, and severity of cognitive impairment following the COVID-19 pandemic

    Long-term exposure to fine particulate matter, lung function and cognitive performance:A prospective Dutch cohort study on the underlying routes

    Get PDF
    Background Exposure to fine particulate matter and black carbon is related to cognitive impairment and poor lung function, but less is known about the routes taken by different types of air pollutants to affect cognition. Objectives We tested two possible routes of fine particulate matter (PM2.5) and black carbon (BC) in impairing cognition, and evaluated their importance: a direct route over the olfactory nerve or the blood stream, and an indirect route over the lung. Methods We used longitudinal observational data for 31232 people aged 18+ from 2006 to 2015 from the Dutch Lifelines cohort study. By linking current and past home addresses to air pollution exposure data from ELAPSE, long-term average exposure (≥ ten years) to PM2.5 and BC was calculated. Lung function was assessed by spirometry and Global Initiative (GLI) z-scores of forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were calculated. Cognitive performance was measured by cognitive processing time (CPT) assessed by the Cogstate Brief Battery. Linear structural equation modeling was performed to test the direct/indirect associations. Results Higher exposure to PM2.5 but not BC was directly related to higher CPT and thus slower cognitive processing speed [18.33 (×10−3) SD above the mean (95% CI: 6.84, 29.81)]. The direct association of PM2.5 constituted more than 97% of the total effect. Mediation by lung function was low for PM2.5 with a mediated proportion of 1.78% (FEV1) and 2.62% (FVC), but higher for BC (28.49% and 46.22% respectively). Discussion Our results emphasize the importance of the lung acting as a mediator in the relationship between both exposure to PM2.5 and BC, and cognitive performance. However, higher exposure to PM2.5 was mainly directly associated with worse cognitive performance, which emphasizes the health-relevance of fine particles due to their ability to reach vital organs directly

    Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies suggest an important role for neurotransmitters as modulators of inflammation. Neuroinflammatory mediators such as cytokines and molecules of the arachidonic acid pathway are generated and released by microglia. The monoamine norepinephrine reduces the production of cytokines by activated microglia <it>in vitro</it>. However, little is known about the effects of norepinephrine on prostanoid synthesis. In the present study, we investigate the role of norepinephrine on cyclooxygenase- (COX-)2 expression/synthesis and prostaglandin (PG)E<sub>2 </sub>production in rat primary microglia.</p> <p>Results</p> <p>Interestingly, norepinephrine increased COX-2 mRNA, but not protein expression. Norepinephrine strongly enhanced COX-2 expression and PGE<sub>2 </sub>production induced by lipopolysaccharide (LPS). This effect is likely to be mediated by β-adrenoreceptors, since β-, but not α-adrenoreceptor agonists produced similar results. Furthermore, β-adrenoreceptor antagonists blocked the enhancement of COX-2 levels induced by norepinephrine and β-adrenoreceptor agonists.</p> <p>Conclusions</p> <p>Considering that PGE<sub>2 </sub>displays different roles in neuroinflammatory and neurodegenerative disorders, norepinephrine may play an important function in the modulation of these processes in pathophysiological conditions.</p

    Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice

    Get PDF
    BACKGROUND: Inflammation is suspected to contribute to the progression and severity of neurodegeneration in Alzheimer's disease (AD). Transgenic mice overexpressing the london mutant of amyloid precursor protein, APP [V717I], robustly recapitulate the amyloid pathology of AD. METHODS: Early and late, temporal and spatial characteristics of inflammation were studied in APP [V717I] mice at 3 and 16 month of age. Glial activation and expression of inflammatory markers were determined by immunohistochemistry and RT-PCR. Amyloid deposition was assessed by immunohistochemistry, thioflavine S staining and western blot experiments. BACE1 activity was detected in brain lysates and in situ using the BACE1 activity kit from R&D Systems, Wiesbaden, Germany. RESULTS: Foci of activated micro- and astroglia were already detected at age 3 months, before any amyloid deposition. Inflammation parameters comprised increased mRNA levels coding for interleukin-1β, interleukin-6, major histocompatibility complex II and macrophage-colony-stimulating-factor-receptor. Foci of CD11b-positive microglia expressed these cytokines and were neighbored by activated astrocytes. Remarkably, β-secretase (BACE1) mRNA, neuronal BACE1 protein at sites of focal inflammation and total BACE1 enzyme activity were increased in 3 month old APP transgenic mice, relative to age-matched non-transgenic mice. In aged APP transgenic mice, the mRNA of all inflammatory markers analysed was increased, accompanied by astroglial iNOS expression and NO-dependent peroxynitrite release, and with glial activation near almost all diffuse and senile Aβ deposits. CONCLUSION: The early and focal glial activation, in conjunction with upregulated BACE1 mRNA, protein and activity in the presence of its substrate APP, is proposed to represent the earliest sites of amyloid deposition, likely evolving into amyloid plaques

    Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptidesi

    Get PDF
    Microglial activation plays an integral role in the development and course of neurodegeneration. Although neuropeptides such as bradykinin (BK), somatostatin (SST), and endothelin (ET) are known to be important mediators of inflammation in the periphery, evidence of a similar function in brain is scarce. Using immunocytochemistry, we demonstrate the expression of receptors for BK (B1, B2 subtypes), ET (ETA, ETB subtypes) and SST (SST 2, 3, 4 subtypes) in primary microglia and microglial cell lines. Exposure of BV2 and N9, as well as primary microglial cells to BK or SST increased Aβ uptake in a concentration-dependent manner, whereas endothelin decreased Aβ uptake. This was caused by increased phagocytosis of Aβ since the rate of intracellular Aβ degradation remained unaffected. All neuropeptides increased chemotactic activity of microglia. In addition, BK reduced Aβ-induced expression of proinflammatory genes including iNOS and COX-2. ET decreased the Aβ-induced expression of monocyte chemoattractant protein 1 and interleukin-6. These results suggest that neuropeptides play an important role in chemotaxis and Aβ clearance and modulate the brain's response to neuroinflammatory processes
    corecore